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Device design in nano-electronics generally yields strongly coupled problems in time-domain. The solution of such problems formally
entails a monolithic approach that is characterised by a large system matrix. In this paper, a error correction scheme is proposed
within the context of electro-thermal coupling in device structures. The scheme avoids the computational burden of a monolithic
implementation and retains the convergence order in time by conveniently solving an error equation in a recursive fashion. The
method can also be integrated with sub-problem-wise order reduction technique.

Index Terms—Differential algebraic equations, Electro-thermal coupling , Error correction, Fractional time step.

I. INTRODUCTION

N this paper an approach for solving electro-thermal prob-

lems encountered in device structure is described. The
approach is built upon the finite integration technique (FIT)
[T], [2] and aims at avoiding the computational burden of
a monolithic solution. This paper is organised as follows:
In Section 2, the electro-thermal problem is formulated, and
numerically solved. In Section 3 a simple numerical example
is provided.

II. DYNAMICAL ELECTRO-THERMAL MODELLING OF
DEVICES STRUCTURES

A. Problem Statement

We depict a structure of interest in Fig. [[l Typically, these
structures comprise dielectric materials, vias, contacts, and
metal interconnects. We want to compute the temperature in
such configurations resulting from an applied voltage. The
governing equations are
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where J is the current density, A the magnetic potential, E the
electric field, ¢ the electric potential, € and o the permittivity
and conductivity of the medium, g, the electric charge density,
pce the thermal capacitance, x the thermal conductivity, T'
the temperature, and ¢; an impressed heat source. The system
(D-@) is coupled through ¢ = E - J and the temperature
dependence of o, pce, and k.

B. Numerical Solution

We attain the numerical solution of (I)-2) by means of FIT
[T, [2]. The grid counterpart of (I)—(2) reads
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Fig. 1. Typical layout (stretched along the vertical direction) of a power
transistor. Image from [3].

where ® and T are the potential and temperature vectors,
Mg, M., and M, are diagonal material matrices representing
conductivity, thermal capacitance, and thermal conductivity,
respectively; the grid heat source Q; is given by

Q=>P (1{M§ST®@TSM§L) 1;, @)

with P a projection matrix that enables to compute the heat
source at the grid nodes [4]], [3]], 1; the i-th basis column vector,
and the sum carried out over all grid primary edges (1], [2]], [6]].
We partition ® and T into {®y4, Ty} and {Py, T}}, that is the
degrees of freedom and boundary potentials and temperatures.
After some mathematical manipulations, we arrive at
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where Hyy and Hy, are heat tensord]. The system @)@ is
an index-1 DAE that can be readily solved by the implicit
Euler method [6]. However, we obtain the solution by means
of a decoupling fractional step approach endowed with an error
correction scheme. The later permits to retain the temporal

I Three-dimensional arrays of depth equal to the length of Ty, and where
the subscripts 4q and g, denote the number of rows and columns, respectively.
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Fig. 2. Correction error |ler|| versus the time step h.

convergence order while avoiding the burden of the monolithic
solution.

C. Error Correction Scheme

We introduce a staggered grid pair in time, ie., t =
[t1,t2,...,t,] with time step h;. The dual grid is shifted by
half of a time step. Then, we proceed to decouple ®4 and T4
over a time step h;, Viz.
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where ~denotes approximations. The resulting system is solved
by means of the implicit Euler method thus generating a first
estimation of {®4, Ty}, viz.
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Subsequently, we define the errors e = ® — ® and ey =
T — T. These errors consist of two contributions; one coming
from the time discretisation and the other coming from the
decoupling. Both error contributions are O(h;). We reduce
these errors by solving the associated error equation in a
recursive fashion, viz.
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where rt and Trg are residual functions, E, = M, MH,
E,; = M, — My, Eg = Hyg — Hag, and Eg, = Hy, — Hap
are function of er.

III. NUMERICAL EXAMPLE

The afore-described method has been applied to a electro-
thermal problem from MAGWEL, modelled in their PTM-ET
software, in which the temperature dependence of the material
matrices M, and M, and heat tensors Hyy and Hy,, is given
by polynomials II,;., (T, T,) with reference temperature T'.
We have solved for ®4 and Ty using the implicit Euler method
with iterative refinement. Figure 2] shows the correction error
|ler|| after two recursions.

IV. CONCLUSION

We have described an approach for the error correction of
index-1 DAE describing electro-thermal systems. The method
avoids the monolithic solution while retaining the time conver-
gence order. Future research will investigate the combination
of the iterative with a sub-problem-wise model order reduction
technique.
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